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Higher modes of natural oscillations of a wide class of mechanical systems, described by general boundary-value problems with 
various types of boundary conditions, are investigated. An effective method of determining the oscillation frequencies and shapes, 
based on the use of asymptotic methods of non-linear mechanics (the averaging, accelerated convergence and asymptotic expansion 
methods) is developed. Expressions for the eigenvalues (frequencies) and eigenfunctions (shapes) are obtained in an explicit 
form with the required degree of accuracy in negative powers of the order number of the mode, and a justification of the method 
is given. The eigenvalues for specific mechanical systems, which perform free or parametric oscillations, are calculated. The 
oscillations of a homogeneous rod and the transverse vibrations of a tightly stretched inhomogeneous string are considered. The 
higher resonance zones in Hill’s problem of parametric oscillations and in the problem of small spatial oscillations of a dynamically 
symmetrical satellite whose polar axis performs non-linear oscillations in the plane of a circular orbit are investigated. Some 
mechanical effects are detected and described. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

We will investigate the natural oscillations of mechanical systems described by a generalized boundary- 
value problem for eigenvalues and eigenfunctions of the form [l-4] 

(p(x,h)u’)’ + f(x, h)u = 0, u(0) = u(L) = 0 

(1-I) 

Herex is the argument (the Euler linear coordinate or time) and L is a specified quantity. The coefficients 
p andfare determined by the mechanical nature of problem (1.1) (see Section 6). These functions are 
assumed to be sufficiently continuous in the region of variation of the variablesx and h considered and 
possess certain structural properties. The parameter h represents the oscillation frequency or a physical 
parameter of the system, henceforth we will investigate the situation where its values can be as large 
as desired (A + 00). It is assumed that relations (1.1) can be reduced to dimensionless variables. The 
problem arises of determining the real eigenvalues A,, and eigenfnnctions U&X) for sufficiently large 
II % 1 [5-71. 

In problem (Ll), to fix our ideas, we will consider the boundary conditions of rigidly clamped ends 
[l, 51. If necessary, one can take more general flexible clamping conditions or conditions in which one 
or both ends are free (see Section 5). Mixed boundary conditions or conditions of periodic@ are also 
of some practical interest [l, 2, 51. Note that the differential operator in problem (1.1) belongs to a 
special case of a wide class of non-self-conjugate linear operators [2,3,7]. 

The main results have been obtained for the self-conjugate boundary-value problem withf = k(x) - q&r); it 
is usually assumed that p = r = 1. We have developed a theory, and also analytical and numerical methods of 
constructing the solution A”, u,(x) (variational methods, the finite-elements method, the accelerated convergence 
method etc. [l, 2,5-g]. Numerical methods are effective for relatively small values of II - 1, i.e. for lower modes 
of oscillation. An investigation of the behaviour of the solution when n * 1, and, in particular, the construction 
of the asymptotic form as n + m is also important from theoretical and applied points of view. Asymptotic 
representations for A,, U,(X) were obtained constructively in the leading term of the expansion [5-71. More accurate 
approximate expressions, which given an absolute error as small as desired and are suitable for practical calculations 
for comparatively small values of n - 1 also, will be useful in practice. 

It is proposed to develop an effective numerical-analytical method of constructing a highly accurate approximate 
solution of generalized boundary-value problem (1.1) when certain requirements imposed on the structure of the 
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functionsp and f are satisfied, namely 

p=p(x). f -02r(x)-coq(x.E), A=w2. e=oJ- 
(1.2) 

O<c,~p.re, <-, O<&~&(J, &,al, WSl 

Functions of the form (1.2) are often encountered in practical applications (see, for example, section 6.4). The 
parameter o characterizes the frequency while E is the oscillation period, it is required to determine the eigenvalues 
of these quantities. The functions r and q are assumed to be continuous in x and, moreover, q depends on E in a 
regular manner: it is continuous and satisfies the Lipschitz condition. Note that, by means of the non-singular linear 
change of variables u * = u.,$, Eq. (1.1) can be reduced to the form in whichp = 1 [2,5]. The functionp(x) must 
be sufficiently smooth and not change in sign (see (1.2)). 

A special case of (1.2) where q = cqo(x), i. e. q(x, 0) = 0, is investigated in the classical Sturm-Liouville problem. 
In this case the following fundamental result is obtained [5] 

vow= (rwpw)“*. cl&)=(r(x)p(x))-“*. (un,um), =6, ++-‘,m-‘) 
In approximation (1.3) the function q&) is immaterial, which confirms the need to refine these expressions. 

The problem of highly accurate asymptotic expansions was discussed in [6, 71, but the formulae 
derived have no constructive character since they are not represented in terms of the initial coefficients; 
the results obtained have an implicit form and require, as a rule, the solutions of transcendental 
equations. 

We will describe an effective method for constructing an approximate solution of generalized 
boundary-value problem (l.l), (1.2), based on the methods of non-linear mechanics (averaging, 
accelerated convergence and asymptotic expansions [9-121). It allows of natural extensions to wider 
classes of boundary-value problems (see below). Note that the problem in question corresponds to 
relative asymptotic closeness of the functionsf(x, A) and k(x) - q&) as A 3 ~0; the absolute values 
may differ considerably (without limit) (by an amount O(a)). 

2. THE USE OF ASYMPTOTIC METHODS 
OF NON-LINEAR MECHANICS 

Consider the generalized boundary-value problem (l.l), (1.2) for asymptotically large values of the 
parameter A. We will assume that these relations can be represented in dimensionless form, i. e. 
A, o, E and L are numerical parameters, where A, o S= 1, E 4 1, L - 1. We will introduce the argument 
s = w, which varies in the asymptotically large interval 0 s x =S LE-l. Then, (1.1) can be reduced to 
the form of the equation of an oscillatory system with slowly varying parameters: x = ES. 

We will represent the boundary-value problem in the standard “amplitude-phase” a, cp variables 
[9-111 

da/ds=&aF+(x,cp,&), u=asincp, dulds=avocoscp. a>0 

Wds = v,(x)+EN+(x,cp,e), q(o) = o. 

F * 6 +g(x.E)sin 2g -+x)(+1 + cos20), 

Nk s -$g(x.E)(I ?COSZ~)++h(x)sinZtJ 

‘p( lx’) = ml 

(24 

6 E q(x, E)pO(x), h = -(In uc(x))‘, 0 < r, / p2 =5 v. G r2 / p, < 00 

The derivative with respect to the “fast” arguments = w characterizes the rate of variation of the phase 
Q: dQ/ds = u. - 1, andx is the “slow” variable. Note that the right-hand sides of Eqs (2.1) are a-periodic 
in Q and, moreover, the variable Q is separated. We have for it the boundary-value problem in the 
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asymptotically largie interval 0 6 s G LE-~, the value of which is determined by the value of n s 1. The 
parameter E = 0 is not specified and must be found from the boundary condition. After calculating 
the function cp(s, e) and the quantities E, = e(n), the unknown a, = a@, 8,) is found by a simple 
quadrature (see Section 4). 

~=\Y+&~(x,\V,&)=~+&~(x,~,E)+E2V2+...+EkVk+Ek+’... 

(2.2) 

The required fast phase cp(s, E) for 0 < s g La-t is constructed approximately using the standard 
scheme of the averaging method. It involves dete training the change of variables cp + JI, close to identity, 
and such that the equation for the new “averaged” phase + has a definite structure with the required 
degree of accuracy in E [9-111. 

Here q and vi are functions to be determined, which depend regularly on E via g(x, e). The degree 
of accuracy k of expansions (2.2) is limited solely by the smoothness of’the function N+ with respect 
to x, since it is analytical with respect to cp. If terms O(& inclusive are taken into account we obtain 
an error O(& in the interval 0 G s < LE-‘. The unknown functions V;: and ui are found in a standard 
way taking into account the condition of m-periodicity with respect to JI [P-14]. For the averaged 
derivative &MS we have the explicit analytic representations 

-=V(')(x,E)+Ek+'..., V")(X,E)E i$Vi(x,~) dw 
ds i-0 

v,(W=(N+)= -+.E) 

(2.3) 

v* --(~)+(~v,)=_$n’_~(H*+G*), /+_ 

v3 =-(~)+;(~~*)+(~v2)~ 
. 

4 -32G(H2+G2)+$ 

etc. The angle brackets in (2.3) and henceforth denote averaging over JI of the corresponding +periodic 
functions, which have an elementary trigonometric structure, which enables the mean values to be 
calculated in an explicit form. The functions Vi (x, $, e) are also defined explicitly 

v, k w, E) =$-~(N+-(N+))~~J=~F(x.v.E, 
2v,(x) 

drp-$y = 
(2.4) 

= -(G’/(8~,))(1- cos2~)+$(H* +G* +H’/v,)sin2yt+ 

+&HG(I-cos4y)-&(H* -G*)sin4v 

etc. We can similarly find the next coefficients vi and Vj_, of asymptotic expansions (2.2). Note that 
when constructing the kth approximation, the determination of function V, from (2.4) is unnecessary, 
since the error of the calculations due to integration \n the interval 0 < s G LE-’ will be O(& while 
taking Vk into account leads to the so-called “improved” k-th approximation [9, lo]. 

Using expressions (2.3) and (2.4) derived above, the required variables $ and cp can be written as 
follows with an absolute accuracy 0(e3) for all 0 =G s < LE-~ 
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yJ y”‘(s. E) = i “(k)(Ey, E)d_Y, k =0,1,2,3,...; s=x&-' 
0 

(2.5) 

Here the functions #‘I are defined in (2.3). Substitution of the higher-order approximations for the 
phase JI into the coefficients V1, 2 is not justified and, moreover, we can take V&X, a(‘), 0) and drop 
terms O(E) in $“‘(s, .!c). We recall that the dependence of the functions vi and 5 on E is due to the 
possible non-smooth relation g(x, C) in accordance with (1.2); We assume that the Lipschitz condition 
is satisfied. Note that V;:(X, TTZ, E) = 0, i.e. the boundary conditions for @‘) and v(k) are identical. Using 
the approximate expressions for + and Q obtained, we can calculate the eigenvalues E, of the parameter 
E with the required accuracy, and also o, = gil and A,, = 0:. As pointed out, the quantities E,, represent 
small periods of natural oscillations while o are high frequencies when 12 ti 1. 

Similar expansions are applicable in problem (1.1) for which we have structtiral representations of 
the coefficients p and f that are more general than (1.2). For example, we can take functions of the 
form 

f”oXr(x,&)+gK-‘q(~,&), ~EC&*W(X,E), K?2, o=&=E-’ 

Here the standard requirements that the functions r and w should not change in sign must be 
satisfied. 

3. DETERMINATION OF THE NATURAL FREQUENCIES AND PHASES 
OF THE OSCILLATIONS 

The eigenvalues of the parameters E,, o, = eil, A,, = 05 of problem (l.l), (1.2) are calculated 
approximately from the final condition for Jr (2.1) and (2.4), (2.5). For convenience we will introduce 
the new unknown z = T IZE, the eigenvalues of which are bounded as II + to. With an error 
O(& = 0(nM4) for z we obtain the equation 

Z= ao+a,~+a,(rZ)2+aj(rZ)3fO((F)4). C=(JW'~l 

ai =a&)=~vjb,t;zW, 
(3.1) 

i=o,1,2,3; E=(z 

0 

The approximate solution zn = z(t) with an error O(c4) is constructed using the asymptotic expansion 
procedure [ll, 131. Estimates of the absolute and relative errors in determining z, are identical. The 
required values of z, are most conveniently found by successive approximations in powers of the 
parameter 5; in particular, when k < 3 we have 

tf3) = a0 + a{‘)~~*) + a,)(@)* + a$“)(~p’)3, n 1~” - zi3)1 = O(<‘) 

&O) 
n =a,, z:‘) =a,(l+a,(O)l;), zi*' =a,(1 ~a,(t4')S(I+u,(0)1;))+ (3.2) 

The intermediate approximations z, , (‘) k = 0, 1,2 differ from zi3) by an amount O(tk”), which can 
be established by simple estimates. Then, using the values of z, @) obtained 3.2) one can determine in 
an elementary way the required eigenvalues of the parameters E$‘), \ CA@, hik . 

In accordance with (3.1) we have 8Lk) = &T(~)(S) = z,~)/(ITTz) in particular, for k = 0, 1, 2, 3. The 
parameter eik) is found with an absolute error 0([ +2); the relative error will be O(tk”), as is the case 
for ztk) We are particularly interested in determining the eigenvalue of the parameter o, = E;* n * 
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The quantity 0:) with absolute error O(& characterizes the value of the natural frequency of 
the oscillations. When k = 
formula (1.3), since P$) = 

0 we obtain the expression of) = IVZ/CX~ corresponding to classical 
6.~:~)~. Naturally, the absolute error in calculating @) is enerally a quantity 

O(gk-‘). The relative error O@“) remains as before, as also for the quantities z, , E, , on , w tch is (6 &) @) h’ 

obvious. 
The following fundamental result has been obtained. Formulae (3.1)-(3.3) specify in an explicit 

analytical form the required refined values of E,, w,, A,,. They are elementary - they can be reduced to 
simple quadratures of known functions - and are often determined in analytical form. The formulae 
can also be used for fairly precise calculations for values of the mode number n that are “not very large”. 
These expressions are obviously suitable with an acceptable accuracy in apTlied problems when 
n>l;forn=2,3,... the relative error of calculations does not exceed 10-2-10- , provided, of course, 
that the functionsp, r and q are sufficiently continuous (see the examples in Section 6 below). In specific 
problems it is advisable to make a preliminary investigation on the basis of numerical calculations for 
the lower oscillation modes n = 1, 2, . . . and to compare the results with the asymptotic expressions 
(3.1) - (3.3) obtained (example 6.4). 

We will briefly describe a scheme for determining the phases cp,&) of the natural oscillations. From 
(2.3), (2.5) and (3.3) we obtain expressions for the average frequencies v!)(x) and phases @)(x) of the 
form 

vf’(x) = ;~(&~k~)iv;(x,E~k)) = ;~(e-;,)iv;(x.,r-i))+ o(,,+,) 
(3.4) 

.\‘ 

w~~‘(~)=wa’Iv~~‘(y)dy. k=0,1.2,3....; c=‘, n*l 
0 ml 

From the constructions and estimates obtained in Sections 2 and 3 we obtain the following estimates 
for the rate of convergence of v, (‘) and &) to the exact expressions 

IV”(X)-VII;‘(X~~Crk+‘, IWJX,- w;k’(X)(+, oax< L (3.5) 

The required phases cp,&) of the natural oscillations with the required degree of accuracy with respect 
to 5 are determined from formulae (2.2) and (3.3) 

In expressions (3.4) and (3.6) we can drop terms O(&. We recall that the functions V;: (2.4) were 
constructed so that IQx, TM, e) = 0. 

A rigorous proof of the convergence to the exact solution as k + tQ is problematic even in the case 
of a system that is analytic with respect to x, since the expansions have an asymptotic character and, 
generally speaking, diverge as k + m. It is more convenient to use the method of successive approxi- 
mations and the corresponding theorem on the contraction operator [ll]. 

It is well known [9-161, that in the asymptotic procedures of the averaging and accelerated convergence 
methods, connected with the construction of the changes of variables, an increase in the accuracy of 
the calculations requires considerable smoothness of the equations or the use of smoothing techniques. 
This is due to the accumulation of the order of derivatives with respect to the slow variable x in the 
case under consideration; the function N+ (2.1) is analytic with respect to cp and has the form of an 
elementary trigonometric polynomial. Analytic@ with respect to x of the right-hand sides, however, 
does not guarantee the convergence of these procedures as k + tQ because of “resonance” between 
the fast variable (p and the slow variable x [14]. 

By combining the averaging and successive-approximation methods [ll] we can construct a 
procedure for the unlimited refinement of the solution (4(x, e) of Eq. (2.1), which does not require 
analytic@. We will describe the corresponding scheme rather briefly and discuss its features. At the 
initial stage we make the change of variables cp + $ using the known function Vr(x, +, E) (2.2). By 
differentiating with respect to s and by appropriate algebraic conversions we obtain a boundary-value 
problem of the form 
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hy/ds=v”‘(x.~)+&~M(x,W,e), yf(O)=O, yr(LE-‘)=xn 

fp=y+Ev’(x,yw, v, =(2V&))-‘uX?VI,E) (3.7) 

-I 

( 

The function M (3.7) is analytic with respect to IJJ in a certain strip for sufficiently small E > 0 (see 
[12,14-16]), and continuous with respect tox. With respect to E it satisfies the Lipschitz condition, which 
is used when constructing the solution of the boundary-value problem, i.e. when determining E, and 
o,, X,. When calculating the function +(x, a) in the range 0 < x c L we apply to Cauchy problem (3.7) 
the method of successive approximations 

,,,(k+‘)(x, E) = #“(x, e) + c; M(y, v’k’(y.a +h k = 1,2,... 
0 

The function I$‘)(x, e) in (3.8) is a quadrature of v(l) (see (2.5)). The successive approximations (3.8) 
converge absolutely and uniformly when E > 0 is sufficiently small to a function +(x, E) that is 
continuously differentiable with respect to x, where the difference JI - @) = O(E), 0 G x d L and Q 
satisfies the Lipschitz condition with respect to E. This property enables us to utilize the procedure for 
determining the eigenvalues E,, and o,, A,, using the method of successive approximations [ll, 131, similar 
to algorithm (3.1)-(3.3). It should be noted that formula (3.8) is extremely cumbersome from the 
computational point of view, since it requires highly accurate integration of a rapidly oscillating function. 
The required phases cpn(x) for the expressions &(x) = I@, E,) are calculated using formula (3.7) for 
the change of variables. 

The procedure of successive changes of variables Q + + (3.7) can be continued recurrently, leading 
to the well-known scheme of the accelerated convergence method [12,14-161. However, its attractive 
property of extremely rapid reduction of the error requires, as in the averaging method, considerable 
smoothness. Computational difficulties also arise due to the catastrophic complication of obtaining the 
analytical expressions &)(x, +@), E)as the order of the iteration k = 1, 2, . . . (id’) = M) increases. 
These difficulties are aggravated when the Moser smoothing technique [16] is employed. 

For practical calculations the use of the above-mentioned procedure, based on the averaging and 
asymptotic expansion methods, turns out to be quite effective. Later, we will assume that the quantities 
E,, w,, X, and the functions Q&) are known with the required degree of accuracy with respect to the 
small parameter 5 = (~12)~~. The smallness of the error, as has been established, is ensured either by 
an increase in IZ (the number of the mode of oscillation or the resonance zone) or by an increase in 
the iteration number k, or a combination of these factors. 

4. DETERMINATION OF THE AMPLITUDES AND SHAPES 
OF THE NATURAL OSCILLATIONS 

After determining the parameters E, and the phases Q"(X), the amplitudes a,(x) can be found, as 
mentioned in Section, 2, by elementary quadratures 

a,(x) = a: exp i F+(y,(p,(y),e,)dy , a: = const 
0 1 

Here a: are arbitrary constants, chosen from the additional conditions, for example, from the condition 
for normalization “with a weight”fx(x, AJ. However, highly accurate integration of the rapidly oscillation 
function F, in (4.1), just like M in (3.8), is extremely difficult for numerical calculations. This is due to 
the requirement that the integration step should be small: Ay Q E, Q 1 when n % 1. It is more effective 
to use the analytical procedure of the averaging method with subsequent use of numerical methods of 
integrating regular (continuous) functions [9-l l] (see Sections 2 and 3). 

We will introduce an unknown smooth variable b, corresponding to a, and we will construct the change 
of variables, close to identity, and such that the equations for b and Q do not contain $ with the required 
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degree of accuracy with respect to E. This change of variables for the phase ‘p + + is constructed 
independently in Section 2 (see (2.1)). The change of variables a + b depends on + and also on x and 
s; it has the form 

a=6(1+EU(x,~,&)), u=Ll,(x,~,&)+&I/*+...+&‘-‘I/,+&&-.. 

(4.2) 
db/ds=&f(x.E), d=d,(x,&)+@ +...+&%k +f?... 

The functions Vi and di are determined in the same way as 5 and Vi (2.2)-(2.4) and here the known 
expressions for V;: and uj are used. By means of elementary operations we obtain the required 
representation; in particular, we obtain the following explicit analytical expressions for d1,2,3 and U,,Z 

d, = (F,) = +(x), 

F+“, +%(U,V, + “2)+;$~2 +d,U, +d,tl;! -2) 
(4.3) 

4 =+-(4 -(F,))&= -&~+cw,c) 
0 

1 y au 
u2 =- 

J( 

dcp 

“0 0 
W, + a,F, 24 -d2 -d&f, -$-v,- acp 

Note that the averages of the functions F+U,, (~3F+/kp)V~, au,la(p and audatp are identically equal 
to zero. The subsequent coefficients of the expansions (4.2) are calculated analytically in the same way 
as (4.3); it is not required to determine lJk for the k-th approximation (see above). 

Further, using the formulae of the change of variables (4.2) we obtain the required amplitude &l(x) 
in the required approximation (with error O@)) 

n;~‘(x)=~;Q)(l +E~~‘u”-“(x.w~&-‘),~~&-‘))), LP-” = u, +&Ur +...+&l-%k_, 

~~‘)~~~=oOexp[ad”‘(y,EP’)dy], d”‘=d, +&+...+Pdk 

(4.4) 

We now substitute the known function &l(x) (4.4) and &l(x) (3.6) into the formulae the change of 
variables (3.6); we obtain the required expressions for the shapes u,(x) of the natural oscillations and 
their derivatives in the k-th approximation 

u:‘)(x) = a~k’(_r)sin &‘(x), jun - u$“‘IG Cck, 0s Xs 45 

(4.5) 

P’(x) = o’,k’vo(x)o~~~(x)cos(p~~~(x). R Iu: - uy(s cp- 

The functions z&(x), z&x) (4.5) satisfy the approximate condition of orthogonality when n, m %= 1 

(4.61 

= 6,, + O(<l:), & = max((rrn)-‘.(rua)-‘) 

It is assumed in (4.6 
? 

than II - m; here it is taken into account that the quantities &1, “$1 may differ 
considerably: w$ = ~$1 = O(1). 
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In the second approximation, refining expression (1.3), by an order of magnitude in terms of powers 
of 5 = (?r@, for the variables U,(X) and u,(x) we obtain the following representations in an explicit 
analytical form 

an (*j(x) = A$b’*(x)( 1 + &jp’f_(x)), I+ =$~h(y)G(y,o)dy+G(x,o)-G(O.O)) 

(4.7) 

u(*)(x) = A,fpb”(x)(sin w:*‘(x) +eL’)I+(x)sin w:‘(x)), n A: = COnst 

In formulae (4.7) we have dropped terms O({‘). Note that the expressions for the subsequent 
approximations have an extremely cumbersome form and if necessary can be obtained using a computer 
algebra program. 

For the approximate solution of system of equations (2.1) for specified E = a, we used a procedure 
which combined the method of change of variables (averaging and accelerated convergence) and the 
method of successive approximations [ll], similar to (3.7) and (3.8). However, it leads to extremely 
complex calculations in the numerical integration of rapidly oscillating functions (see above). 

From the applied point of view we are particularly interested in finding the natural frequencies 
of oscillation accurately. These quantities are less subject to the influence of perturbing factors, 
which are difficult to take into account (non-linearities and dissipation of different physical kinds, 
parameter drift etc.). The natural frequencies are important stable characteristics of mechanical 
oscillatory systems. 

5. OTHER TYPES OF BOUNDARY-VALUE PROBLEMS 

The scheme described above for determining the frequencies and shapes of higher modes of oscillation 
can be extended directly to boundary-value problems with other boundary conditions. 

1. Suppose that the boundary conditions for Eq. (1.1) correspond to free ends, i.e. u’(O) = u’(L) = 
0. We then have the following boundary conditions for the phase ‘p in the change of variables (2.1) 

cp(O)=sc/2, cp(fX-‘)=(rr/2)(2n+l), n=1,2,... 

Note that it would be more convenient to seek a solution in the form 

u=acoscp, du/ds=-av,sincp (5.1) 

The boundary conditions then retain the form (2.1), but the equations for a and Q are changed 
somewhat. Without repeating similar constructions we will derive, in particular, the coefficients of the 
change of variables of the type (2.2)-(2.4), (4.2) and (4.3) to obtain the second approximation 

v. =(rlp)“*, v, =-xg. v2 =)/,H’-Xvo(H2+G2) 

v, =(2vJ’F,(x,yr,E), V,(x,(rr/2)(2n+I),&)=O 
(5.2) 

d, =-Mh, d2 =xG’-xv,HG 

u, =-(2vJ’N+ww), U,(x,(K/2)(2n+l)*&)sO 

The eigenvalues of the parameters E,, o,,, A,, are determined in the same way as described in 
Section 3. The formulae for calculating the required functions are practically the same. The calculations 
are carried out in the same way as when one of the ends is clamped while the other is free. 

2. We will briefly investigate the asymptotic form of the frequencies and forms of the higher modes 
of oscillations of system (l.l), (1.2) for the general case of elastic clamping of the ends: pu’ 5 k, 
u = 0 whenx = 0, L, where koc are the elasticity coefficients concentrated at the ends. We must conclude 
from physical considerations that when o + 01 the term characterizing the distributed elasticity at 
x = 0, L, i.e. u’(O) = u(L) = 0, if ko,L + 00 , is of fundamental importance. Hence, as in the case of 
free ends (see Section 1) it is more convenient to introduce the change of variables (5.1), which enables 
us to represent the initial boundary-value problem in the form 
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dalds=EaF+(x,cp-lcf2.E). a(O)=a’#O 

dcp/ds=vo(x)+EN,(x,cp-Ir/Z,&), X=E.S 
(5.3) 

cp(O) = cp” = arctg(ak,p(O)), (p(LE-‘) = ‘pL = xn + arctg(ek,p,(l)) 

It follows from (5.3) that the elasticity concentrated at the ends when k,, - 1 affects the solution 
only in the second approximation with respect to E. We obtain the following expressions for the required 
coefficients vi and Vi 

V~=(r/pf’~, VI =-xg, v2=&H’cos2rp0-j4G’sin2tp”-Kvo(H2+G2) 

v, = -qqcos2cpO - cos2yr) + G(sin 2yr -sin 2tp’)) 
w 

etc. The quantities o,, in the principal (zeroth), first and second approximations are determined from 
conditions of the type (3.1) - (3.3) in the form 

(Jp) = I!!!! _ a2(0)+W-cp" aI (do’) 
n 

a0 a0 xn a0 

* &pL=cpL-m 
(5.5) 

It must be borne in mind that, according to (5.3), the quantities q”, S(pL - 5. On the basis of formulae 
(5.4) and (5.5), similar to (3.4) and (3.6), we find the phases cpn(x), and then the amplitudes a,(x) and 
the shapes U,(X) of the natural oscillations with the required degree of accuracy in 5 (see Section 4). 

3. The approach developed above, based on a combination of the averaging and asymptotic expansion 
methods, can also be extended to generalized boundary-value problems with mixed boundary conditions 
(for example, periodic@ conditions in Hill’s problem), conditions which depend on A and also to more 
general equations of state, in particular, systems of equations with variable coefficients which depend 
on h in a certain fairly arbitrary manner. It is of considerable interest for applications to problems of 
the theory of elastic and parametric oscillations to develop asymptotic methods of non-linear mechanics 
for interacting multidimensional systems, and also for partial differential equations, for example, for 
the asymptotic form of the frequencies and shapes of the natural oscillations of inhomogeneous 
membranes, including those with a complex boundary. 

The use of the approach developed above to construct the frequencies and shapes of higher modes 
of oscillation with a specified accuracy in combination with the highly effective numerical-analytical 
method of accelerated convergence [4] to determine the lower frequencies and shapes enables fairly 
complete investigations of a wide class of mechanical systems to be carried out. 

6. ANALYSIS OF SPECIFIC MECHANICAL SYSTEMS 

For illustration purposes we will analyse some specific examples which are of interest for applications 
(the oscillations of inhomogeneous elastic systems and parametric oscillations with complex 
excitation). We will calculate the higher eigenvalues (the frequencies or parameters) of some oscillatory 
systems using the procedure proposed in Sections 2,3 and 5. 

6.1. The longitudinal oscilhions of an inhomogeneous rectilinear rod. The natural frequencies and 
shapes are determined by solving the Sturm-Liouville problem [l, 51 

(ES(x)u’)‘+hds(x)u=O, OGXSl 

(6.1) 
I) u(0) = U(l) = 0; 2) u’(0) = u’(l) = 0 

Here 1 is the length of the rod, E is Young’s modulus, d is the volume density, S(X) is the cross-sectional 
area and h is the constant of separation (the square of the frequency), which is to be determined. To 
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fur our ideas we will take boundary conditions of the first and second kind in (6.1). The functions u, S, 
the argumentx and the parameter h will be reduced to dimensionless form so that E = d = 1 = 1. Problem 
(6.1) will be investigated for X * 1, i.e. AdZ2/E 9 1 in the initial dimensional variables. 

From (1.1) and (1.2) we have r = p = S(x), q = 0; reduction to the form of system (2.1) gives 
v. = 1, g = 0, h = S’/S. Using formulae (2.3) and (5.2) we obtain. 

where the superscripts denote correspondence to boundary conditions 1 and 2 in accordance with (6.1). 
Using relations (3.1) - (3.31 and (5.2) we obtain the following required expressions for the natural 

frequencies with an error O({ ) 

(6.2) 

It follows from (6.2) that the relative contribution of the inhomogeneity is 0(c2) while the absolute 
contribution is O(t;); it is due to two factors: local whenx = 0,l and integral (quadrature). 

Let us consider specific expressions for the function S(x). 
Suppose S(x) = 1 + 0(2x - 1) is a linear function ofx, where 101 < 1; then S(1/2) = 1 irrespective 

of the value of the specified parameter 0 while the volume of the rod V= 1. Substituting S(x) into (6.2) 
we obtain the corrections 

&I+_ ~(W’82(1 -q-‘. 50.1: =g(7&e2(i -e2)-’ 

From an analysis of (6.2) and (6.3) we obtain the following qualitative conclusion: an inhomogeneity 
that is linear in x in the case of clamped ends reduces the natural frequencies, while for free ends it 
increases them. 

We will now consider the oscillations of a rod of circular cross section, whose radius varies linearly 
withx: R(x) = R. + 8(2x - 1) with the condition 18 1 < Ro. The cross sectional area S(x) = mR2(_x), but 
S(l/Z) = ITR~ independently of 8. From (6.2) we obtain the values of the corrections 

60; =o. &0,2 =4(rr&P(&j -02)-‘. le(C Re 

Hence, it follows from (6.4) that in the second approximation with respect to 5 the frequency of 
longitudinal oscillations of a conical rod is constant with respect to the parameter 8 in the case of clamped 
ends and increases when f3 # 0 for a rod with free ends. If it is required in this case that the volume of 
the rod Vshould be fixed and equal to TX’, where. x = const, we obtain the following expressions for 
the required corrections 

sol, = 0, 60; = (xn)-ly2(1- gy2)-‘, y2 = 4e2x-2 < 3 (6.5) 

Thus, a change in the taper parameter 8 for a family of rods of constant volume leads to similar 
qualitative conclusions regarding the corrections to the natural frequencies of oscillations of the higher 
modes. Using formulae (6.2) one can calculate the corrections 803; for arbitrary differentiable functions 
S(x). In general they have an arbitrary sign or are equal to zero depending on the effect of the local 
factor; the integral term is always positive. 

6.2. The vibrations of an inhomogeneous string. The natural frequencies and forms of transverse 
vibrations of a tightly stretched string are determined by solving classical boundary-value problems for 
the equation. 

Tu”+hp(x)u = 0, p(x) =dS(x), OGxsf (6.6) 

To fix our ideas we will take as the boundary conditions relations 1 and 2 from (6.1). Here T is the 
constant tension in the string, p(x) is the mass per unit length and I is the length of the string. Without 
loss of generality we can set T = I = d = 1. The functions u, p, the argument x and the parameter A are 
assumed given in dimensionless form. 



High-frequency natural oscillations of mechanical systems 793 

From (1.1) and (1.2) we have r = p(x),p = 1, q = 0; transformation of (6.6) to the form (2.1) gives 
the following expressions: v. = Jp7;), g = 0, h = l/2 p’(x)/p(x), where p(x) = S(x). As in example 6.1, 
formulae (2.3) give the expressions 

V,,) e 0, v;* =T~H'-#oH2 
Using relations (3.1)-(3.3) and (5.2) we obtain the natural frequencies of;2 in the third approximation 

(the relative error is 0(14) and the absolute error is 0(c3) 

031;~ = Tcnla, +&.01;2, Swl;’ = -a;*/(7cn) 

We will investigate the bOehaviour of the correction 60’,‘~ (6.7) for different functions p(x). Like (6.2) 
the integral term is always positive while the local term can have any sign or can be zero. For a specific 
form of the function p(x), i.e. S(X), the quantities oa, oiJ in (6.7) are determined analytically or 
numerically. 

Consider some special cases. 
For a linear function p(x) = 1 + 0(Zr - l), 19 1 < 1, the expressions for oa, 60, can be found in an 

analytical form using (6.7) 

a,, =2(1+e*/3)[(1~0)~'*+(1-e)"*]-~, &I$, =-~6DI(m). 60: =&D/(E~) 

(6.8) 

The following qualitative result follows from (6.8) analogous to the model of the oscillations of a 
rod (see (6,3)): a linear change in the density p(x) with respect tox leads to a reduction in the frequency 
of natural vibrations of a string with clamped ends. If the ends of the string are free for transverse 
displacements, the correction is positive. Note that for this family of strings the volume (mass) is constant: 
V(6) = 1 (m(e) = 1). 

Suppose now that the radius of a string of circular cross section varies linearly, while the mass (volume) 
is fixed and equal to m(0) = IT independently of 9, which leads to the relation Rf, = 1 - 8*/3. Like (6.8) 
we obtain 

a0 =(I -e2/3)"2. 60: = -fiDl(nn>, b;=~Dl(m) 
(6.9) 

~e)=4e2(1-e2/3)"2(1-4/e2)-2, e*<s 

It follows from (6.9) that 80: c 0, as was the case of relations (6.3) and (6.8), but unlike (6.4) and 
(6.5). The corrections to the frequencies in the case of free ends, as above, again turn out to be positive. 
From relations (6.7) we can determine the principal terms and corrections of the higher vibration 
frequencies for arbitrary continuous functions p(x). Note that the refining corrections can have arbitrary 
sign due to a considerable influence of the local factor (when x = 0,l). 

6.3. The asymptotic form of the eigenvalues in Hill’s problem. We will consider the problem of highly 
accurate construction of periodic solutions of the Hill-type equation 

u” + [h - q(x)]u = 0, q(x + 1) = q(x), u(0) = u(l), u’(0) = u’(1) (6.10) 

Here q(x) is a sufficiently continuous periodic function, which possibly also depends on certain 
parameters. It is required to obtain the real values of A, corresponding to fairly high modes of oscillations 
n & 1. An extremely wide class of problems in the theory of oscillations, elasticity theory 
;;i mathematical physics can be reduced to relations of the form (6.10) (see, for example, [l, 2, 9, 
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We will investigate the situation, often encountered in practice, when q(x) = q( -x) is an even function. 
Problem (6.10) is then equivalent to two Sturm-Liouville problems with boundary conditions of the 
first and second kind, to which odd and even solutions correspond. Note that, in addition to 
l/n resonances, there are 2/n resonances, including the first ones for even II. Using the notationi: 
(1.1) and (1.2) we have the following classical problem: the perturbation is of order E , where E = o , 
x = 02. Carrying out elementary calculations, similar to those in Section 2, we obtain the required 
expressions for the functions vi corresponding to the fifth approximation in powers of E (the relative 
error is O(e6)), for boundary conditions of the first kind (the plus sign in front of the functions q’(x)) 
and of the second kind (the minus sign) 

vg = I, v2 =--X,:(x), v4 = g(fq”(x) - s2w), Vl.3.5 = 0 
(6.11) 

v(s)(x , E) = vg +&*v2(x)+E4v4(%) 
The natural 

frequencies can be calculated, with absolute error 0(t5) from expressions (6.11) using the procedure 
described in Section 3. As a result we obtain the required representations 

a’,” = m - EL_z a*+, 
ml (m)3 ’ 

a2,4 =~v2,4tx)dr (6.12) 

It follows from relations (6.11) and (6.12) that there appears to be no difference between the 
asymptotic forms of the eigenvalues o,, for conditions of the first and second kind in terms 0(t3), although 
in v4 the signs in front of the functions q” are different. This is due to the fact that, because of the 
smoothness and periodic@ of the function q, the integral of q”(x) is zero. A difference occurs when 
higher-order terms are taken into account. Further, if the function has zero mean, then 0~2 = 0 and the 
correction is positive 

6oj;2 = %(q2)(W3. (4) = 0 

where (q2) is the mean of q2 (see Mathieu’s equation etc. [2,9, 17,171). In the general case, when the 
q(x) is not even, a special procedure can be developed for the asymptotic form of the eigenvalues An 
of the periodic boundary-value problem. For discontinuous functions f(x) (Meisner’s equation [17]) 
using (6.11) we can write the required approximations up to terms O(< ). 

6.4. Spatial oscillations of an artificial satellite. We will assume that the polar axis of a dynamically 
symmetrical artificial satellite undergoes oscillations of arbitrary amplitude (or rotation) in the plane 
of a circular orbit. A small spatial perturbation of these motions then occurs and small angular deviations 
of the axis of the satellite from the plane of the orbit will be investigated. The corresponding generalized 
problem for determining the periodic solutions in dimensionless form is described by the following 
expressions [18] (to fix our ideas we will consider the case of an oblate body) 

u”+16K~(k)[(~+kcne)~-k~s”*e]*=O (6.13) 

u = u(x), 0s XG I. u(0) = u(l). u’(0) = u’(l) 

k* = 2h,,x*, x=(3(a-I))-“*, OSk< I, I <a<2 

Here u is the angular deviation of the polar axis, the prime denotes differentiation with respect to 
the argument x = w/(27r), w is the independent variable, characterizing plane oscillations in the “action- 
angle” variables, 0 = 4K(k)x is the argument of the Jacobi elliptic functions cn and sn and K(k) is the 
complete elliptic integral of the first kind. The equation contains two constant parameters: the modulus 
k and the parameter x; ho is the dimensionless energy of plane oscillations and OL is the ratio of the 
polar and equatorial moments of inertia. 

In the case of a prolate body (0 d OL c 1) the equation of small oscillations of the type (6.13) is modified 
P81. 

Because of the evenness with respect tox of the coefficient of u, periodic problem (6.13) is equivalent 
to two Strum-Liouville problems (see example 6.3). The asymptotic form of the eigenvalues x,,(k) is 
constructed for sufficiently large values of it, which determine the number of the resonance zone, and 
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for 0 c k c 1. Using the notation of (1.1) and (1.2) we have 

h=er* =(~Kx)*, E=O-‘, x=4Kk 

(6.14) 
p=r=l, q =-2xcne-&x*(c”*e-S”Q) 

We will determine the eigenvalues o,(x) of the problem presented in (6.143 in the second 
approximation with respect to the parameter 5 = (IVZ)-~, i.e. with a relative error O(l ) for x - 1, when 
the value of k is “not very close” to k = 1. In this approximation the quantities of;2(x) for both boundary- 
value problems are the same. In accordance with the constructions in Sections 2 and 5, taking expressions 
(6.14) into account we obtain 

co,(X)=7u7+- ’ x*(sn*e), (sn*f+=+(*--$Q) 
27rn 

X”(k) = -&+$(W’-W’) (6.15) 

Here E is the complete elliptic integral of the second kind. 
The following estimate follows from (6.15) 

x,, =(n/2)(1-k*/4) 

when k4 Q 1, and as k + 1 the principal term of the expression for x,, decreases monotonically, since 
K+ 03. 

Numerical calculations for J&* with 0 c k 6 0.999 are shown in the figure (the superscript 1 
corresponds to odd oscillations and the superscript 2 corresponds to even oscillations). They are obtained 
by the highly accurate accelerated-convergence method [4] and confirm the acceptable accuracy of 
expressions (6.15) when it = 2 if 0 d k s 0.2; the curves of xi and xi diverge somewhat. For n = 3 
there is good agreement when 0 G k G 0.4; the divergence is considerably less. An increase in IZ of the 
resonance zone leads to an increase in accuracy and an extension of the range of values of k. The curves 
of x’, (k) and xff (k) diverge much less and bend in accordance with the asymptotic form of the principal 
term in (6.15). The following qualitative result is of interest 

Note that the case of prolate body and rotational modes were investigated similarly using appropriate 
modified equations in [18]. 

I 

k 

Fig. I 
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Hence, the calculation of interesting specific problems confirms the high efficiency of the asymptotic 
approach developed when investigating higher modes of oscillations of mechanical systems. 

I wish to thank A. M. Shmatkov for his help in the highly accurate calculations of example 6.4 and 
for drawing the graphs. 
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